
Figure 6. ΔT/T0 vs. Time for All Rb Samples at 1 mW power (45 μJ/cm2)

Figure 7. Maximum ΔT/T0 values for Each Rb Sample at 1 mW power (45 μJ/cm2) 

Figure 8. ΔT/T0 vs. Time for 5% Rb at 0.16 mW (7 μJ/cm2), 0.5 mW (23 μJ/cm2), and 1 mW (45 μJ/cm2) 
power

Overview
• Four different samples: MAFAPbIBr 0% Rb, 0.1% Rb, 1% Rb, and 5% Rb
• Testing for photoconductivity 
• Measuring excited carrier lifetime from photoconductivity decay

Figure 4. Time Resolved Terahertz (THz) Spectroscopy Set-up

Key Steps & Observations
• We test for photoconductivity by monitoring THz transmission—the more 

conductive a sample is, the lower the THz transmission (Fig. 5)
• We first characterize the THz wave through the sample without the 

photoexcitation beam (optical pump blocked)
• We proceed to unblock the photoexcitation beam and measure the change 

in THz transmission (ΔT) as a function of THz arrival time
• When the THz probe and photoexcitation pulse arrive at the same time, ΔT 

will be the greatest
• As excited carriers relax over time, fewer carriers will absorb THz, leading 

to a decay in ΔT

Figure 5. Attenuation of THz pulse due to photoexcited sample
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• Adding Rb to MAFAPbIBr increases photoconductivity, at least up to 5% Rb
• The carrier lifetime, for a given fluence, does not vary significantly with Rb 

concentration, at least up to 5%
• Carrier lifetimes for these perovskites are fluence dependent, with 

increased fluence resulting in increased decay rate
• Mapping the lifetimes for different fluences can allow us to determine the 

recombination dynamics in our samples

Conclusions and Future Work

What are perovskites?
• Perovskites are compounds with the same crystal lattice structure as the 

mineral CaTiO3 (generally have the chemical formula ABX3)
• Organic-inorganic hybrid perovskites, such as CH3NH3PbI3 (MAPbI3), were 

recently adapted for thin film solar cells (Fig. 1)
• These hybrid perovskites are efficient at absorbing light and transporting 

charges

Figure 1. Spectrum of Perovskite Combinations1

Why are perovskite solar cells (PSC) important?
• High versatility and performance potential, compared to other solar cell 

technologies 
• Relatively cheap and easy to assemble, especially to silicon
• Main drawback: long-term stability (i.e. sensitive to moisture)

How can rubidium potentially improve photovoltaic performance?
• Currently, there are only a handful of cations that are viable for PSCs
• Increasing perovskite complexity, by introducing Rb as an inorganic cation, 

might promote more photoactive “black” phases, beneficial for light 
harvesting

How does a PSC work?
• When light is absorbed by the perovskite, charge carriers (i.e. electrons) are 

freed into the conduction band, where they can be collected on an electrode 
and extracted to power a device (Fig. 2)

• These excited carriers can also relax down to the valence band or be trapped 
by defects in the material if not collected quickly enough (Fig. 3)

1Figure adapted from Correa-Baena et al. Energy & Environmental Science 710, 10.3 (2017)

Results (continued)

Figure 2. Outline of Photovoltaics Figure 3. Relaxation Pathways for Carriers

semiconductor semiconductor
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• As Rb concentration increases, ΔT, and thus photoconductivity of the 
sample, increases (Figs. 6 and 7)

• The decay in ΔT, however, remains the same for all samples (Fig. 6)
• Increasing the excitation power, and thus the energy fluence, of the 

photoexcitation beam path increases the decay rate for carriers across all 
samples (Fig. 8)
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